
Zimpl User Guide
(Zuse Institute Mathematical Programming Language)

Thorsten Koch

for Version 3.3.8

June 28, 2019

Contents

1 Preface 2

2 Introduction 3

3 Invocation 5

4 Format 5

4.1 Expressions . 6
4.2 Tuples and sets . 8
4.3 Parameters . 10
4.4 Initializing sets and parameters from a file 12
4.5 sum-expressions . 13
4.6 forall-statements . 14
4.7 Function definitions . 14
4.8 The do print and do check commands 14

5 Models 14

5.1 Variables . 15
5.2 Objective . 15
5.3 Constraints . 15

6 Modeling examples 19

6.1 The diet problem . 19
6.2 The traveling salesman problem 20
6.3 The capacitated facility location problem 21
6.4 The n-queens problem . 23

7 Error messages 27

1

Zimpl

Abstract

Zimpl is a little language in order to translate the mathematical model
of a problem into a linear or (mixed-)integer mathematical program, ex-
pressed in lp or mps file format which can be read and (hopefully) solved
by a lp or mip solver.

1 Preface

May the source be with you, Luke!

Many of the things in Zimpl (and a lot more) can be found in the excellent
book about the modeling language ampl from Robert Fourer, David N. Gay
and Brian W. Kernighan [FGK03]. Those interested in an overview of the
current state-of-the-art in (commercial) modeling languages might have a look
at [Kal04b]. On the other hand, having the source code of a program has its
advantages. The possibility to run it regardless of architecture and operating
system, the ability to modify it to suit the needs, and not having to hassle with
license managers may make a much less powerful program the better choice.
And so Zimpl came into being.

By now Zimpl has grown up and matured. It has been used in several in-
dustrial projects and university lectures, showing that it is able to cope with
large-scale models and also with students. This would not have been possible
without my early adopters Armin Fügenschuh, Marc Pfetsch, Sascha Lukac,
Daniel Junglas, Jörg Rambau, and Tobias Achterberg. Thanks for their com-
ments and bug reports. Special thanks to Tuomo Takkula for revising this
manual.

Zimpl is licensed under the GNU Lesser General Public License Version
3. For more information on free software see http://www.gnu.org. The latest
version of Zimpl can be found at http://zimpl.zib.de. If you find any bugs,
then please send an email to mailto:koch@zib.de, and do not forget to include
an example that shows the problem. If somebody extends Zimpl, then I am
interested in getting patches to include them into the main distribution.

The best way to refer to Zimpl in a publication is to cite my PhD thesis [Koc04]

@PHDTHESIS{Koch2004,

author = "Thorsten Koch",

title = "Rapid Mathematical Programming",

school = "Technische {Universit\"at} Berlin",

year = "2004",

url = "http://www.zib.de/Publications/abstracts/ZR-04-58/",

note = "ZIB-Report 04-58"

}

2

http://www.gnu.org
http://zimpl.zib.de
mailto:koch@zib.de

Zimpl

2 Introduction

Consider the lp formulation of the shortest s, t-path problem, applied to some directed
graph (V,A) with cost coefficient cij for all (i, j) ∈ A:

min
∑

(i,j)∈A

cijxij

∑

(iv)∈δ−(v)

xiv =
∑

(vi)∈δ+(v)

xvi for all v ∈ V \ {s, t}

xij ∈ {0, 1}, for all i,j in A

(1)

where δ+(v) := {(v, i) ∈ A}, δ−(v) := {(i, v) ∈ A} for v ∈ V . For a given graph the
instantiation is

s

a

17

b

47

19

t

53

23

min 17xsa + 47xsb + 19xab + 53xat + 23xbt
subject to xsa = xab + xat

xsb + xab = xbt
xij ∈ {0, 1}, for all i,j

The standard format used to feed such a problem into a solver is called mps

which was invented by ibm for the Mathematical Programming System/360 in the
sixties [Kal04a, Spi04]. Nearly all available lp and mip solvers can read this format.
While mps is a nice format to punch into a punch card and at least a reasonable format
to read for a computer, it is quite unreadable for humans. For instance, the mps file
of the above linear program looks as follows:

NAME sh o r t e s t p a t h . l p
ROWS
N Obj
E c0
E c1
E c2

COLUMNS
INTSTART ’MARKER’ ’ INTORG’
x0 Obj 17 c0 1
x0 c2 1
x1 Obj 47 c1 1
x1 c2 1
x2 c1 1 c0 −1
x2 Obj 19
x3 Obj 53 c0 −1
x4 c1 −1 Obj 23

RHS
RHS c2 1

BOUNDS
UP Bound x0 1
UP Bound x1 1
UP Bound x2 1
UP Bound x3 1
UP Bound x4 1

ENDATA

3

Zimpl

Another possibility is the lp format [ILO02] which is more readable1, quite similar to
the instantiation, but only supported by a few solvers:

Minimize

Obj: +17 x0 +47 x1 +19 x2 +53 x3 +23 x4

Subject to

c0: -1 x3 -1 x2 +1 x0 = +0

c1: -1 x4 +1 x2 +1 x1 = +0

c2: +1 x1 +1 x0 = +1

Bounds

0 <= x0 <= 1

0 <= x1 <= 1

0 <= x2 <= 1

0 <= x3 <= 1

0 <= x4 <= 1

Generals

x0 x1 x2 x3 x4

End

Since each coefficient of the matrix A must be stated explicitly it is also not a desirable
choice for the development of a mathematical model.

Abstract formulation

Now, with Zimpl it is possible to write

set V :={"a","b","s","t"};

set A :={<"s","a">, <"s","b">, <"a","b">, <"a","t">, <"b","t">};

param c[A] := <"s","a"> 17, <"s","b"> 47, <"a","b"> 19, <"a","t"> 53,

<"b","t"> 23;

defset dminus(v) := {<i,v> in A};

defset dplus(v) := {<v,j> in A};

var x[A] binary;

minimize cost: sum<i,j> in A: c[i,j] * x[i,j];

subto fc:

forall <v> in V - {"s","t"}:

sum<i,v> in dminus(v): x[i,v] == sum<v,i> in dplus(v): x[v,i];

subto uf:

sum<s,i> in dplus("s"): x[s,i] == 1;

– compare this with (1). Feeding the script into Zimpl will automatically generate mps

or lp files.

The value of modeling languages like Zimpl lies in their ability to work directly
on the mathematical model in lieu of dealing merely with coefficients. Furthermore,
more often than not instantiations (read lp or mps-files) of models are generated from
some external data. In some sense, these are the result of the model applied to this
external data. In our example above, the external data is the graph together with the
cost coefficients and the specification of s and t, and the model is the formulation of
the shortest st-path problem. Of course, Zimpl supports the initialization of models
from files. For instance, the first lines from the Zimpl script above can be replaced by

1 The lp format has also some idiosyncratic restrictions. For example variables should not
be named e12 or the like. and it is not possible to specify ranged constraints.

4

Zimpl

set V:= {read "nodes.txt" as "<1s>"};

set A:= {read "arcs.txt" as "<1s,2s>"};

param c[A] := read "arcs.txt" as "<1s,2s>3n";

and the Zimpl script is ready produce instances of any shortest path problem
defined by the files “nodes.txt” and “arcs.txt”. The format of those files will be described
in Subsection 4.4.

3 Invocation

In order to run Zimpl on a model given in the file ex1.zpl type the command:

zimpl ex1.zpl

In general terms the command is:

zimpl [options] <input-files>

It is possible to give more than one input file. They are read one after the other as
if they were all one big file. If any error occurs while processing, Zimpl prints out an
error message and aborts. In case everything goes well, the results are written into two
or more files, depending on the specified options.

The first output file is the problem generated from the model in either cplexlp,
mps, or a “human readable” format, with extensions .lp, .mps, or .hum, respectively.
The next one is the table file which has the extension .tbl. The table file lists all variable
and constraint names used in the model and their corresponding names in the problem
file. The reason for this name translation is the limitation of the length of names in
the mps format to eight characters. Also the lp format restricts the length of names.
The precise limit is depending on the version. cplex 7.0 has a limit of 16 characters,
and ignores silently the rest of the name, while cplex 9.0 has a limit of 255 characters,
but will for some commands only show the first 20 characters in the output.

A complete list of all options understood by Zimpl can be found in Table 1. A
typical invocation of Zimpl is for example:

zimpl -o solveme -t mps data.zpl model.zpl

This reads the files data.zpl and model.zpl as input and produces as output the files
solveme.mps and solveme.tbl. Note that in case mps-output is specified for a maxi-
mization problem, the objective function will be inverted, because the mps format has
no provision for stating the sense of the objective function. The default is to assume
minimization.

4 Format

Each zpl-file consists of six types of statements:

◮ Sets

◮ Parameters

◮ Variables

◮ Objective

◮ Constraints

◮ Function definitions

Each statement ends with a semicolon. Everything from a hash-sign #, provided it is
not part of a string, to the end of the line is treated as a comment and is ignored. If
a line starts with the word include followed by a filename in double quotation marks,
then this file is read and processed instead of the line.

5

Zimpl

-t format Selects the output format. Can be either lp, which is default, or mps,
or pip, which is polynomial IP, or hum, which is only human readable,
or rlp, which is the same as lp but with rows and columns randomly
permuted. The permutation is depending on the seed. Also possible is
pip m which means Polynomial IP.

-o name Sets the base-name for the output files.
Defaults to the name of the first input file with its path and extension
stripped off.

-F filter The output is piped through a filter. A %s in the string is replaced by the
output filename. For example -F "gzip -c >%s.gz" would compress
all the output files.

-l length Sets maximal length of variables and constraints for lp format files to
length.

-n cform Select the format for the generation of constraint names. Can be cm

which will number them 1 . . . n with a ‘c’ in front. cn will use the name
supplied in the subto statement and number them 1 . . . n within the
statement. cf will use the name given with the subto, then a 1 . . . n

number like in cm and then append all the local variables from the forall
statements.

-P filter The input is piped through a filter. A %s in the string is replaced by
the input filename. For example -P "cpp -DWITH_C1 %s" would pass
the input file through the C-preprocessor.

-s seed Positive seed number for the random number generator. For example,
-s ‘date +%N‘ will produce changing random numbers.

-v 0..5 Set the verbosity level. 0 is quiet, 1 is default, 2 is verbose, 3 and 4 are
chatter, and 5 is debug.

-D name=val Sets the parameter name to the specified value. This is equivalent to
having this line in the Zimpl program: param name:=val. If there is
a declaration in the Zimpl file and a -D setting for the same name, the
latter takes precedent.

-b Enables bison debug output.
-f Enables flex debug output.
-h Prints a help message.
-m Writes a cplexmst (Mip STart) file.
-O Tries to reduce the generated LP by doing some presolve analysis.
-r Writes a cplexord branching order file.
-V Prints the version number.

Table 1: Zimpl options

4.1 Expressions

Zimpl works on its lowest level with two types of data: Strings and numbers. Wherever
a number or string is required it is also possible to use a parameter of the corresponding
value type. In most cases, expressions are allowed instead of just a number or a string.
The precedence of operators is the usual one, but parentheses can always be used to
specify the evaluation order explicitly.

Numeric expressions

A number in Zimpl can be given in the usual format, e. g. as 2, -6.5 or 5.234e-12.
Numeric expressions consist of numbers, numerically valued parameters, and any of

6

Zimpl

the operators and functions listed in Table 2. Additionally the functions shown in
Table 3 can be used. Note that those functions are only computed with normal double
precision floating-point arithmetic and therefore have limited accuracy. Examples on
how to use the min and max functions can be found in Section 4.3 on page 10.

a∧b, a**b a to the power of b ab, b must be integer
a+b addition a+ b

a-b subtraction a− b

a*b multiplication a · b
a/b division a/b

a mod b modulo a mod b

abs(a) absolute value |a|

sgn(a) sign x > 0 ⇒ 1, x < 0 ⇒ −1, else 0

floor(a) round down ⌊a⌋
ceil(a) round up ⌈a⌉
round(a) round towards zero ⌊a⌉
a! factorial a!, a must be nonnegative integer
min(S) minimum of a set mins∈S

min(s in S) e(s) minimum over a set mins∈S e(s)

max(S) maximum of a set maxs∈S

max(s in S) e(s) maximum over a set maxs∈S e(s)

min(a,b,c,...,n) minimum of a list min(a, b, c, . . . , n)
max(a,b,c,...,n) maximum of a list max(a, b, c, . . . , n)
sum(s in S) e(s) sum over a set

∑

s∈S e(s)

prod(s in S) e(s) product over a set
∏

s∈S e(s)

card(S) cardinality of a set |S|

random(m,n) pseudo random number ∈ [m,n], rational
ord(A,n,c) ordinal c-th component of the n-th

element of set A.
length(s) length of a string number of characters in s

if a then b

else c end conditional

{

b, if a = true
c, if a = false

Table 2: Rational arithmetic functions

sqrt(a) square root
√
a

log(a) logarithm to base 10 log10 a

ln(a) natural logarithm lna

exp(a) exponential function ea

Table 3: Double precision functions

String expressions

A string is delimited by double quotation marks ", e. g. "Hallo Keiken". Two strings
can be concatenated using the + operator, i. e., "Hallo " + "Keiken" gives "Hallo

Keiken". The function substr(string, begin, length) can be used to extract parts
of a string. begin is the first character to be used, and counting starts with zero at first
character. If begin is negative, then counting starts at the end of the string. length

7

Zimpl

is the number of charaters to extract starting at begin. The length of a string can be
determined using the length function.

Boolean expressions

These evaluate either to true or to false. For numbers and strings the relational op-
erators <, <=, ==, !=, >=, and > are defined. Combinations of Boolean expressions
with and, or, and xor2 and negation with not are possible. The expression tuple in

set-expression (explained in the next section) can be used to test set membership of a
tuple. Boolean expressions can also be in the then or else part of an if expression.

Variant expressions

The following is either a numeric, string or boolean expression, depending on whether
expression is a string, boolean, or numeric expression:

if boolean-expression then expression else expression end

The same is true for the ord(set, tuple-number, component-number) function which
evaluates to a specific element of a set (details about sets are covered below).

4.2 Tuples and sets

A tuple is an ordered vector of fixed dimension where each component is either a
number or a string. Sets consist of (a finite number of) tuples. Each tuple is unique
within a set. All sets in Zimpl are internally ordered, but there is no particular order.
Sets are delimited by braces, { and }, respectively. All tuples of a specific set have the
same number of components. The type of the n-th component for all tuples of a set
must be the same, i. e., they have to be either all numbers or all strings. The definition
of a tuple is enclosed in angle brackets < and >, e. g. <1,2,"x">. The components are
separated by commas. If tuples are one-dimensional, it is possible to omit the tuple
delimiters in a list of elements, but in this case they must be omitted from all tuples
in the definition, e. g. {1,2,3} is valid while {1,2,<3>} is not.

Sets can be defined with the set statement. It consists of the keyword set, the
name of the set, an assignment operator :=, and a valid set expression.

Sets are referenced by the use of a template tuple, consisting of placeholders which
are replaced by the values of the components of the respective tuple. For example, a
set S consisting of two-dimensional tuples could be referenced by <a,b> in S. If any
of the placeholders are actual values, only those tuples matching these values will be
extracted. For example, <1,b> in S will only get those tuples whose first component
is 1. Please note that if one of the placeholders is the name of an already defined
parameter, set or variable, it will be substituted. This will result either in an error or
an actual value.

Examples

set A := { 1, 2, 3 };

set B := { "hi", "ha", "ho" };

set C := { <1,2,"x">, <6,5,"y">, <787,12.6,"oh"> };

For set expressions the functions and operators given in Table 4 are defined.
An example for the use of the if boolean-expression then set-expression else set-

expression end can be found on page 10 together with the examples for indexed sets.

2a xor b := a∧ ¬b∨¬a∧ b

8

Zimpl

Examples

set D := A cross B;

set E := { 6 to 9 } union A without { 2, 3 };

set F := { 1 to 9 } * { 10 to 19 } * { "A", "B" };

set G := proj(F, <3,1>);

will give: { <"A",1>, <"A",2"> ... <"B",9> }

A*B,
A cross B cross product {(x, y) | x ∈ A∧ y ∈ B}

A+B,
A union B union {x | x ∈ A∨ x ∈ B}

union <i>

in I: S ditto, of indexed sets
⋃

i∈I Si

A inter B intersection {x | x ∈ A∧ x ∈ B}

inter <i>

in I: S ditto, of indexed sets
⋂

i∈I Si

A\B, A-B,
A without B difference {x | x ∈ A∧ x 6∈ B}

A symdiff B symmetric difference {x | (x ∈ A∧ x 6∈ B)∨ (x ∈ B∧ x 6∈ A)}

{n .. m by s }, generate, {x | x = min(n,m) + i|s| 6 max(n,m),

(default s = 1) i ∈ N0, x, n,m, s ∈ Z}

{n to m by s } generate {x | x = n+ is 6 m, i ∈ N0, x, n,m, s ∈ Z}

proj(A, t) projection The new set will consist of n-tuples, with
t = (e1, . . . , en) the i-th component being the ei-th com-

ponent of A.
argmin <i>

in I : e(i) minimum argument argmini∈I e(i)

argmin(n) <i> n minimum The new set consists
in I : e(i) arguments of those n elemens of i for which e(i) was

smallest. The result can be ambiguous.
argmax <i>

in I : e(i) maximum argument argmaxi∈I e(i)

argmax(n) <i> n maximum The new set consists
in I : e(i) arguments of those n elemens of i for which e(i) was

biggest. The result can be ambiguous.
if a then b

else c end conditional

{

b, if a = true
c, if a = false

Table 4: Set related functions

Conditional sets

It is possible to restrict a set to tuples that satisfy a Boolean expression. The expression
given by the with clause is evaluated for each tuple in the set and only tuples for which
the expression evaluates to true are included in the new set.

9

Zimpl

Examples

set F := { <i,j> in Q with i > j and i < 5 };

set A := { "a", "b", "c" };

set B := { 1, 2, 3 };

set V := { <a,2> in A*B with a == "a" or a == "b" };

will give: { <"a",2>, <"b",2> }

set W := argmin(3) <i,j> in B*B : i+j;

will give: { <1,1>, <1,2>, <2,1> }

Indexed sets

It is possible to index one set with another set resulting in a set of sets. Indexed sets
are accessed by adding the index of the set in brackets [and], like S[7]. Table 5 lists
the available functions. There are three possibilities how to assign to an indexed set:

◮ The assignment expression is a list of comma-separated pairs, consisting of a
tuple from the index set and a set expression to assign.

◮ If an index tuple is given as part of the index, e. g. <i> in I, the assignment is
evaluated for each value of the index tuple.

◮ By use of a function that returns an indexed set.

Examples

set I := { 1..3 };

set A[I] := <1> {"a","b"}, <2> {"c","e"}, <3> {"f"};

set B[<i> in I] := { 3 * i };

set P[] := powerset(I);

set J := indexset(P);

set S[] := subsets(I, 2);

set T[] := subsets(I, 1, 2);

set K[<i> in I] := if i mod 2 == 0 then { i } else { -i } end;

set U := union <i> in I : A[i];

set IN := inter <j> in J : P[j]; # empty!

powerset(A) generates all subsets of A {X | X ⊆ A}

subsets(A,n) generates all subsets of A
with n elements {X | X ⊆ A∧ |X| = n}

subsets(A,n,m) generates all subsets of A
with between n and m elements {X | X ⊆ A∧ n 6 |X| 6 m}

indexset(A) the index set of A {1 . . . |A|}

Table 5: Indexed set functions

4.3 Parameters

Parameters are the way to define constants within Zimpl. They can be declared with
or without an index set. Without index a parameter is just a single value which is either
a number or a string. For indexed parameters there is one value for each member of
the set. It is possible to declare a default value.

10

Zimpl

Parameters are declared in the following way: The keyword param is followed by
the name of the parameter optionally followed by the index set in square brackets.
Then, after the assignment operator, there is a list of pairs. The first element of each
pair is a tuple from the index set, while the second element is the value of the parameter
for this index.

Examples

set A := { 12 .. 30 };

set C := { <1,2,"x">, <6,5,"y">, <3,7,"z"> };

param q := 5;

param u[A] := <13> 17, <17> 29, <23> 14 default 99;

param amin := min A; # = 12

param umin := min <a> in A : u[a]; # = 14

param mmax := max <i> in { 1 .. 10 } : i mod 5;

param w[C] := <1,2,"x"> 1/2, <6,5,"y"> 2/3;

param x[<i> in { 1 .. 8 } with i mod 2 == 0] := 3 * i;

Assignments do not need to be complete. In the example, no value is given for index
<3,7,"z"> of parameter w. This is correct as long as it is never referenced.

Parameter tables

It is possible to initialize multi-dimensional indexed parameters from tables. This is
especially useful for two-dimensional parameters. The data is put in a table structure
with | signs on each margin. Then a headline with column indices has to be added,
and one index for each row of the table is needed. The column index has to be one-
dimensional, but the row index can be multi-dimensional. The complete index for
the entry is built by appending the column index to the row index. The entries are
separated by commas. Any valid expression is allowed here. As can be seen in the
third example below, it is possible to add a list of entries after the table.

Examples

set I := { 1 .. 10 };

set J := { "a", "b", "c", "x", "y", "z" };

param h[I*J] := | "a", "c", "x", "z" |

|1| 12, 17, 99, 23 |

|3| 4, 3,-17, 66*5.5 |

|5| 2/3, -.4, 3, abs(-4)|

|9| 1, 2, 0, 3 | default -99;

param g[I*I*I] := | 1, 2, 3 |

|1,3| 0, 0, 1 |

|2,1| 1, 0, 1 |;

param k[I*I] := | 7, 8, 9 |

|4| 89, 67, 55 |

|5| 12, 13, 14 |, <1,2> 17, <3,4> 99;

The last example is equivalent to:

param k[I*I] := <4,7> 89, <4,8> 67, <4,9> 55, <5,7> 12,

<5,8> 13, <5,9> 14, <1,2> 17, <3,4> 99;

11

Zimpl

4.4 Initializing sets and parameters from a file

It is possible to load the values for a set or a parameter from a file. The syntax is:

read filename as template [skip n] [use n] [match s] [comment s]

filename is the name of the file to read. template is a string with a template for the
tuples to generate. Each input line from the file is split into fields. The splitting is done
according to the following rules: All leading and trailing space and tab characters in the
line are removed. Whenever a space, tab, comma, semicolon or colon is encountered a
new field is started. Text that is enclosed in double quotes is not split and the quotes
are always removed. When a field is split all space and tab characters around the
splitting point are removed. If the split is due to a comma, semicolon or colon, each
occurrence of these characters starts a new field.

Examples

All these lines have three fields:

Hallo;12;3

Moin 7 2

"Hallo, Peter"; "Nice to meet you" 77

,,2

For each component of the tuple, the number of the field to use for the value is given,
followed by either n if the field should be interpreted as a number or s for a string.
After the template, some optional modifiers can be given. The order does not matter.
match s compares the regular expression s against the line read from the file. Only
if the expression matches the line, it is processed further. POSIX extended regular
expression syntax is used. comment s sets a list of characters that start comments in
the file. Each line is ended when any of the comment characters is found. skip n
instructs to skip the first n lines of the file. use n limits the number of lines to use to
n. When a file is read, empty lines, comment lines, and unmatched lines are skipped
and not counted for the use and skip clauses.

Examples

set P := { read "nodes.txt" as "<1s>" };

nodes.txt:

Hamburg → <"Hamburg">
München → <"München">
Berlin → <"Berlin">

set Q := { read "blabla.txt" as "<1s,5n,2n>" skip 1 use 2 };

blabla.txt:

Name;Nr;X;Y;No → skip
Hamburg;12;x;y;7 → <"Hamburg",7,12>
Bremen;4;x;y;5 → <"Bremen",5,4>
Berlin;2;x;y;8 → skip

param cost[P] := read "cost.txt" as "<1s> 2n" comment "#";

cost.txt:

Name Price → skip
Hamburg 1000 → <"Hamburg"> 1000
München 1200 → <"München"> 1200

12

Zimpl

Berlin 1400 → <"Berlin"> 1400

param cost[Q] := read "haha.txt" as "<3s,1n,2n> 4s";

haha.txt:

1:2:ab:con1 → <"ab",1,2> "con1"
2:3:bc:con2 → <"bc",2,3> "con2"
4:5:de:con3 → <"de",4,5> "con3"

As with table format input, it is possible to add a list of tuples or parameter entries
after a read statement.

Examples

set A := { read "test.txt" as "<2n>", <5>, <6> };

param winniepoh[X] :=

read "values.txt" as "<1n,2n> 3n", <1,2> 17, <3,4> 29;

It is also possible to read a single value into a parameter. In this case, either the
file should contain only a single line, or the read statement should be instructed by
means of a use 1 parameter only to read a single line.

Examples

Read the fourth value in the fifth line

param n := read "huhu.dat" as "4n" skip 4 use 1;

If all values in a file should be read into a set, this is possible by use of the "<s+>"

template for string values, and "<n+>" for numerical values. Note, that currently at
most 65536 values are allowed in a single line.

Examples

Read all values into a set

set X := { read "stream.txt" as "<n+>" };

stream.txt:

1 2 3 7 9 5 6 23

63 37 88

4

87 27

X := { 1, 2, 3, 7, 9, 5, 6, 23, 63, 37, 88, 4, 87, 27 };

4.5 sum-expressions

Sums are stated in the form:

sum index do term

It is possible to nest several sum instructions, but it is probably more convenient to
simply merge the indices. The general form of index is:

tuple in set with boolean-expression

It is allowed to write a colon : instead of do and a vertical bar | instead of with.
The number of components in the tuple and in the members of the set must match.
The with part of an index is optional. The set can be any expression giving a set.
Examples are given in the next section.

13

Zimpl

4.6 forall-statements

The general forms are:

forall index do term

It is possible to nest several forall instructions. The general form of index equals that
of sum-expressions. Examples are given in the next section.

4.7 Function definitions

It is possible to define functions within Zimpl. The value a function returns has to
be either a number, a string, a boolean, or a set. The arguments of a function can
only be numbers or strings, but within the function definition it is possible to access
all otherwise declared sets and parameters.

The definition of a function has to start with defnumb, defstrg, defbool, or
defset, depending on the return value. Next is the name of the function and a list of
argument names put in parentheses. An assignment operator := has to follow and a
valid expression or set expression.

Examples

defnumb dist(a,b) := sqrt(a*a + b*b);

defstrg huehott(a) := if a < 0 then "hue" else "hott" end;

defbool wirklich(a,b) := a < b and a >= 10 or b < 5;

defset bigger(i) := { <j> in K with j > i };

4.8 The do print and do check commands

The do command is special. It has two possible incarnations: print and check. print
will print to the standard output stream whatever numerical, string, Boolean or set
expression, or tuple follows it. This can be used for example to check if a set has the
expected members, or if some computation has the anticipated result. check always
precedes a Boolean expression. If this expression does not evaluate to true, the program
is aborted with an appropriate error message. This can be used to assert that specific
conditions are met. It is possible to use a forall clause before a print or check

statement. For string and numeric values, it is possible to give a comma-separated list
to the print statement.

Examples

set I := { 1..10 };

do print I;

do print "Cardinality of I:", card(I);

do forall <i> in I with i > 5 do print sqrt(i);

do forall <p> in P do check sum <p,i> in PI : 1 >= 1;

5 Models

In this section, we use the machinery developed up to now to formulate mathemat-
ical programs. Apart from the usual syntax to declare variables, objective functions
and constraints there is special syntax available that permits the easy formulation of
special constraints, such as special ordered sets, conditional constraints, and extended
functions.

14

Zimpl

5.1 Variables

Like parameters, variables can be indexed. A variable has to be one out of three
possible types: Continuous (called real), binary or integer. The default type is real.
Variables may have lower and upper bounds. Defaults are zero as the lower and infinity
as the upper bound. Binary variables are always bounded between zero and one. It
is possible to compute the value of the lower or upper bounds depending on the index
of the variable (see the last declaration in the example). Bounds can also be set to
infinity and -infinity. Binary and integer variables can be declared implicit, i. e.,
the variable can be assumed to have an integral value in any optimal solution to the
integer program, even if it is declared continuous. Use of implicit is only useful if used
together with a solver that take advantage of this information. As of this writing, only
scip (http://scip.zib.de) with linked in Zimpl can do so. In all other cases, the
variable is treated as a continuous variable. It is possible to specify initial values for
integer variables by use of the startval keyword. Furthermore, the branching priority
can be given using the priority keyword. Currently, these values are written to a
cplexord branching order file if the -r command line switch is given.

Examples

var x1;

var x2 binary;

var x3 integer >= -infinity # free variable

var y[A] real >= 2 <= 18;

var z[<a,b> in C] integer

>= a * 10 <= if b <= 3 then p[b] else infinity end;

var w implicit binary;

var t[k in K] integer >= 1 <= 3 * k startval 2 * k priority 50;

5.2 Objective

There must be at most one objective statement in a model. The objective can be either
minimize or maximize. Following the keyword is a name, a colon : and then a linear
term expressing the objective function.

If there is an objective offset, i. e., a constant value in the objective function, Zimpl

automatically generates an internal variable @@ObjOffset set to one. This variable is
put into the objective function with the appropriate coefficient.3

Example

minimize cost: 12 * x1 -4.4 * x2 + 5

+ sum <a> in A : u[a] * y[a]

+ sum <a,b,c> in C with a in E and b > 3 : -a/2 * z[a,b,c];

maximize profit: sum <i> in I : c[i] * x[i];

5.3 Constraints

The general format for a constraint is:

subto name: term sense term

Alternatively, it is also possible to define ranged constraints which have the form:

3The reason for this is that there is no portable way to put an offset into the objective
function in neither lp nor mps-format.

15

http://scip.zib.de

Zimpl

subto name: expr sense term sense expr

name can be any name starting with a letter. term is defined as in the objective. sense
is one of <=, >= and ==. In case of ranged constraints both senses have to be equal and
may not be ==. expr is any valid expression that evaluates to a number.

Additional to linear constraints as in the objective it is also possible to state terms
with higher degree for constraints.

Many constraints can be generated with one statement by the use of the forall

instruction, as shown below.

Examples

subto time: 3 * x1 + 4 * x2 <= 7;

subto space: 50 >= sum <a> in A: 2 * u[a] * y[a] >= 5;

subto weird: forall <a> in A: sum <a,b,c> in C: z[a,b,c]==55;

subto c21: 6*(sum <i> in A: x[i] + sum <j> in B : y[j]) >= 2;

subto c40: x[1] == a[1] + 2 * sum <i> in A do 2*a[i]*x[i]*3+4;

subto frown: forall <i,j> in X cross { 1 to 5 } without { <2,3> }

with i > 5 and j < 2 do

sum <i,j,k> in X cross { 1 to 3 } cross Z do

p[i] * q[j] * w[j,k] >= if i == 2 then 17 else 53 end;

subto nonlin: 3 * x * y * z + 6 <= x^3 + z * y^2 + 3;

Note that in the example i and j are set by the forall instruction. So they are fixed
in all invocations of sum.

if in terms

Part of a constraint can be put into an if-then-else-end. In this particular case, the
else part is mandatory and both parts need to include some variables in the term.

Examples

subto c2: sum <i> in I :

if (i mod 2 == 0) then 3 * x[i] else -2 * y[i] end <= 3;

if in constraints

It is possible to put two variants of a constraint into an if-statement. A forall

statement inside the result part of an if is also possible. The else part is optional.

Examples

subto c1: forall <i> in I do

if (i mod 2 == 0) then 3 * x[i] >= 4

else -2 * y[i] <= 3 end;

Combining constraints with and

It is possible to group constraints by concatenating them with and. This group will
then always be processed together. This operator is particularly useful in combination
with forall and if.

16

Zimpl

Examples

subto c1: forall <i> in I:

if (i > 3)

then if (i == 4)

then z[1] + z[2] == i

else z[2] + z[3] == i

end and

z[3] + z[4] == i and

z[4] + z[5] == i

else

if (i == 2)

then z[1] + z[2] == i + 10

else z[2] + z[3] == i + 10

end and

z[3] + z[4] == i + 10 and

z[4] + z[5] == i + 10

end;

Constraint attributes

It is possible to specify special attributes for a constraint regarding how it should be
handled later on.

scale Before the constraint is written to a file, it is scaled by 1/max |c| with c being
the coefficients of the constraint.

separate Do not include the constraint in the initial LP, but separate it later on. The
constraint need not to be checked for feasibility. When written to an lp file it
will be written into a USER CUTS section, in scip separate will be set to true.

checkonly Do not include the constraint in the initial LP, but separate only to check
for feasibility. When written to an lp file it will be written into a LAZY CUTS

section, in scip check will be set to true.

indicator If vif (see below) is part of the constraint then it is modeled as an indicator
constraint and not by a big-M formulation. If you use this attribute, you can no
longer write mps-format, as indicator variables are not supported by this format.

The attributes are given after the constraint, before the semi-colon and are separated
by commas.

Examples

subto c1: 1000 * x + 0.3 * y <= 5, scale, checkonly;

subto c2: x + y + z == 7, separate;

subto c3: vif x == 1 then y == 7 end, indicator;

Special ordered sets

Zimpl can be used to specify special ordered sets (sos) for an integer program. If a
model contains any sos a sos file is written together with the lp or mps file. The
general format of a special ordered set is:

sos name: [type1|type2] priority expr : term

name can be any name starting with a letter. sos use the same namespace as con-
straints. term is defined as in the objective. type1 or type2 indicate whether a type-1

17

Zimpl

or type-2 special ordered set is declared. The priority is optional and equal to the
priority setting for variables. Many sos can be generated with one statement by the
use of the forall instruction, as shown above.

Examples

sos s1: type1: 100 * x[1] + 200 * x[2] + 400 * x[3];

sos s2: type2 priority 100 : sum <i> in I: a[i] * x[i];

sos s3: forall <i> in I with i > 2:

type1: (100 + i) * x[i] + i * x[i-1];

Extended constraints

Zimpl can generate systems of constraints that mimic conditional constraints. The
general syntax is as follows (note that the else part is optional):

vif boolean-constraint then constraint [else constraint] end

where boolean-constraint consists of a linear expression involving variables. All these
variables have to be bounded integer or binary variables. It is not possible to use any
continuous variables or integer variables with infinite bounds in a boolean-constraint.
All comparison operators (<, 6, ==, !=, >, >) are allowed. Also, the combination of
several terms with and, or, and xor and negation with not is possible. The conditional
constraints (those which follow after then or else) may include bounded continuous
variables. Be aware that using this construct will lead to the generation of several
additional constraints and variables.

Examples

var x[I] integer >= 0 <= 20;

subto c1: vif 3 * x[1] + x[2] != 7

then sum <i> in I : y[i] <= 17

else sum <k> in K : z[k] >= 5 end;

subto c2: vif x[1] == 1 and x[2] > 5 then x[3] == 7 end;

subto c3: forall <i> in I with i < max(I) :

vif x[i] >= 2 then x[i + 1] <= 4 end;

Extended functions

It is possible to use special functions on terms with variables that will automatically
be converted into a system of inequalities. The arguments of these functions have to
be linear terms consisting of bounded integer or binary variables. At the moment only
the function vabs(t) that computes the absolute value of the term t is implemented,
but functions like the minimum or the maximum of two terms, or the sign of a term
can be implemented in a similar manner. Again, using this construct will lead to the
generation of several additional constraints and variables.

Examples

var x[I] integer >= -5 <= 5;

subto c1: vabs(sum <i> in I : x[i]) <= 15;

subto c2: vif vabs(x[1] + x[2]) > 2 then x[3] == 2 end;

18

Zimpl

6 Modeling examples

In this section we show some examples of well-known problems translated into Zimpl

format.

6.1 The diet problem

This is the first example in [Chv83, Chapter 1, page 3]. It is a classic so-called diet
problem, see for example [Dan90] about its implications in practice.

Given a set of foods F and a set of nutrients N, we have a table πfn of the amount
of nutrient n in food f. Now Πn defines how much intake of each nutrient is needed.
∆f denotes for each food the maximum number of servings acceptable. Given prices cf
for each food, we have to find a selection of foods that obeys the restrictions and has
minimal cost. An integer variable xf is introduced for each f ∈ F indicating the number
of servings of food f. Integer variables are used, because only complete servings can be
obtained, i. e., half an egg is not an option. The problem may be stated as:

min
∑

f∈F

cfxf subject to

∑

f∈F

πfnxf > Πn for all n ∈ N

0 6 xf 6 ∆f for all f ∈ F

xf ∈ N0 for all f ∈ F

This translates into Zimpl as follows:

s e t Food := { "Oatmeal " , " Ch icken " , "Eggs " ,
"Mi lk " , " Pie " , "Pork" } ;

s e t Nu t r i e n t s := { "Energy " , " P ro t e i n " , "Calc ium " } ;
s e t At t r := Nu t r i e n t s + { " S e r v i n g s " , " P r i c e " } ;

param needed [Nu t r i e n t s] :=
<"Energy "> 2000 , <" P ro t e i n "> 55 , <"Calc ium "> 800 ;

param data [Food ∗ At t r] :=
| " S e r v i n g s " , " Energy " , " P ro t e i n " , "Calc ium " , " P r i c e " |

"Oatmeal "	4 , 110 , 4 , 2 , 3
" Ch icken "	3 , 205 , 32 , 12 , 24
"Eggs "	2 , 160 , 13 , 54 , 13
"Mi lk "	8 , 160 , 8 , 284 , 9
" P ie "	2 , 420 , 4 , 22 , 20
"Pork"	2 , 260 , 14 , 80 , 19
(k ca l) (g) (mg) (c en t s)

va r x[< f> in Food] i n t e g e r >= 0 <= data [f , " S e r v i n g s "] ;

min imize c o s t : sum <f> in Food : data [f , " P r i c e "] ∗ x [f] ;

subto need : f o r a l l <n> in Nu t r i e n t s do
sum <f> in Food : data [f , n] ∗ x [f] >= needed [n] ;

The cheapest meal satisfying all requirements costs 97 cents and consists of four servings
of oatmeal, five servings of milk and two servings of pie.

19

Zimpl

6.2 The traveling salesman problem

In this example, we show how to generate an exponential description of the symmetric
traveling salesman problem (tsp) as given for example in [Sch03, Section 58.5].

Let G = (V, E) be a complete graph, with V being the set of cities and E being
the set of links between the cities. Introducing binary variables xij for each (i, j) ∈ E

indicating if edge (i, j) is part of the tour, the tsp can be written as:

min
∑

(i,j)∈E

dijxij subject to

∑

(i,j)∈δv

xij = 2 for all v ∈ V

∑

(i,j)∈E(U)

xij 6 |U| − 1 for all U ⊆ V, ∅ 6= U 6= V

xij ∈ {0, 1} for all (i, j) ∈ E

The data is read in from a file that gives the number of the city and the x and y
coordinates. Distances between cities are assumed Euclidean. For example:

City X Y

Berlin 5251 1340

Frankfurt 5011 864

Leipzig 5133 1237

Heidelberg 4941 867

Karlsruhe 4901 840

Hamburg 5356 998

Bayreuth 4993 1159

Trier 4974 668

Hannover 5237 972

Stuttgart 4874 909

Passau 4856 1344

Augsburg 4833 1089

Koblenz 5033 759

Dortmund 5148 741

Bochum 5145 728

Duisburg 5142 679

Wuppertal 5124 715

Essen 5145 701

Jena 5093 1158

The formulation in Zimpl follows below. Please note that P[] holds all subsets of
the cities. As a result 19 cities is about as far as one can get with this approach.
Information on how to solve much larger instances can be found on the concorde

website4.

s e t V := { read " t sp . dat " as "<1s>" comment "#" } ;
s e t E := { <i , j> i n V ∗ V with i < j } ;
s e t P [] := power se t (V) ;
s e t K := i n d e x s e t (P) ;

param px [V] := read " t sp . dat " as "<1s> 2n" comment "#" ;
param py [V] := read " t sp . dat " as "<1s> 3n" comment "#" ;

defnumb d i s t (a , b) := s q r t ((px [a]−px [b])^2 + (py [a]−py [b]) ^ 2) ;

va r x [E] b i n a r y ;

min imize c o s t : sum <i , j> i n E : d i s t (i , j) ∗ x [i , j] ;

subto two_connected : f o r a l l <v> in V do
(sum <v , j> i n E : x [v , j]) + (sum <i , v> in E : x [i , v]) == 2 ;

subto no_subtour :
f o r a l l <k> in K with

4http://www.tsp.gatech.edu

20

Zimpl

card (P [k]) > 2 and card (P [k]) < card (V) − 2 do
sum <i , j> i n E with <i> in P [k] and <j> in P [k] : x [i , j]
<= card (P [k]) − 1 ;

The resulting lp has 171 variables, 239,925 constraints, and 22,387,149 non-zero en-
tries in the constraint matrix, giving an mps-file size of 936mb. cplex solves this to
optimality without branching in less than a minute.5

An optimal tour for the data above is Berlin, Hamburg, Hannover, Dortmund, Bo-
chum, Wuppertal, Essen, Duisburg, Trier, Koblenz, Frankfurt, Heidelberg, Karlsruhe,
Stuttgart, Augsburg, Passau, Bayreuth, Jena, Leipzig, Berlin.

6.3 The capacitated facility location problem

Here we give a formulation of the capacitated facility location problem. It may also be
considered as a kind of bin packing problem with packing costs and variable sized bins,
or as a cutting stock problem with cutting costs.

Given a set of possible plants P to build, and a set of stores S with a certain demand
δs that has to be satisfied, we have to decide which plant should serve which store. We
have costs cp for building plant p and cps for transporting the goods from plant p to
store s. Each plant has only a limited capacity κp. We insist that each store is served
by exactly one plant. Of course we are looking for the cheapest solution:

min
∑

p∈P

cpzp +
∑

p∈P,s∈S

cpsxps subject to

∑

p∈P

xps = 1 for all s ∈ S (2)

xps 6 zp for all s ∈ S, p ∈ P (3)
∑

s∈S

δsxps 6 κp for all p ∈ P (4)

xps, zp ∈ {0, 1} for all p ∈ P, s ∈ S

We use binary variables zp which are set to one, if and only if plant p is to be built.
Additionally, we have binary variables xps which are set to one if and only if plant p

serves shop s. Equation (2) demands that each store is assigned to exactly one plant.
Inequality (3) makes sure that a plant that serves a shop is built. Inequality (4) assures
that the shops are served by a plant which does not exceed its capacity. Putting this
into Zimpl yields the program shown on the next page. The optimal solution for the
instance described by the program is to build plants A and C. Stores 2, 3, and 4 are
served by plant A and the others by plant C. The total cost is 1457.

5Only 40 simplex iterations are needed to reach the optimal solution.

21

Zimpl

s e t PLANTS := { "A" , "B" , "C" , "D" } ;
s e t STORES := { 1 . . 9 } ;
s e t PS := PLANTS ∗ STORES;

How much does i t c o s t to b u i l d a p l a n t and what c a p a c i t y
w i l l i t then have ?
param b u i l d i n g [PLANTS] := <"A"> 500 , <"B"> 600 , <"C"> 700 , <"D"> 800 ;
param c a p a c i t y [PLANTS] := <"A"> 40 , <"B"> 55 , <"C"> 73 , <"D"> 90 ;

The demand f o r each s t o r e
param demand [STORES] := <1> 10 , <2> 14 ,

<3> 17 , <4> 8 ,
<5> 9 , <6> 12 ,
<7> 11 , <8> 15 ,
<9> 16 ;

Tran sp o r t a t i on co s t from each p l a n t to each s t o r e
param t r a n s p o r t [PS] :=

| 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 |
"A"	55 , 4 , 17 , 33 , 47 , 98 , 19 , 10 , 6
"B"	42 , 12 , 4 , 23 , 16 , 78 , 47 , 9 , 82
"C"	17 , 34 , 65 , 25 , 7 , 67 , 45 , 13 , 54
"D"	60 , 8 , 79 , 24 , 28 , 19 , 62 , 18 , 45

va r x [PS] b i n a r y ; # I s p l a n t p s u p p l y i n g s t o r e s ?
va r z [PLANTS] b i n a r y ; # I s p l a n t p b u i l t ?

We want i t cheap
min imize c o s t : sum <p> in PLANTS : b u i l d i n g [p] ∗ z [p]

+ sum <p , s> in PS : t r a n s p o r t [p , s] ∗ x [p , s] ;

Each s t o r e i s s u p p l i e d by e x a c t l y one p l a n t
subto a s s i g n :

f o r a l l <s> in STORES do
sum <p> in PLANTS : x [p , s] == 1 ;

To be ab l e to su pp l y a s t o r e , a p l a n t must be b u i l t
subto b u i l d :

f o r a l l <p , s> in PS do
x [p , s] <= z [p] ;

The p l a n t must be ab l e to meet the demands from a l l s t o r e s
tha t a r e a s s i gn ed to i t
subto l i m i t :

f o r a l l <p> in PLANTS do
sum <s> in S : demand [s] ∗ x [p , s] <= ca p a c i t y [p] ;

22

Zimpl

6.4 The n-queens problem

The problem is to place n queens on a n× n chessboard so that no two queens are on
the same row, column or diagonal. The n-queens problem is a classic combinatorial
search problem often used to test the performance of algorithms that solve satisfiability
problems. Note though, that there are algorithms available which need linear time in
practice, like, for example, those of [SG91]. We will show four different models for the
problem and compare their performance.

The integer model

The first formulation uses one general integer variable for each row of the board. Each
variable can assume the value of a column, i. e., we have n variables with bounds 1 . . . n.
Next, we use the vabs extended function to model an all different constraint on the
variables (see constraint c1). This makes sure that no queen is located in the same
column than any other queen. The second constraint (c2) is used to block all the
diagonals of a queen by demanding that the absolute value of the row distance and the
column distance of each pair of queens are different. We model a 6= b by abs(a−b) > 1.

Note that this formulation only works if a queen can be placed in each row, i. e., if
the size of the board is at least 4× 4.

param queens := 8 ;

s e t C := { 1 . . queens } ;
s e t P := { <i , j> i n C ∗ C with i < j } ;

va r x [C] i n t e g e r >= 1 <= queens ;

subto c1 : f o r a l l <i , j> i n P do vabs (x [i] − x [j]) >= 1 ;
subto c2 : f o r a l l <i , j> i n P do

vabs (vabs (x [i] − x [j]) − abs (i − j)) >= 1 ;

The following table shows the performance of the model. Since the problem is modeled
as a pure satisfiability problem, the solution time depends only on how long it takes to
find a feasible solution.6 The columns titled Vars, Cons, and NZ denote the number
of variables, constraints and non-zero entries in the constraint matrix of the generated
integer program. Nodes lists the number of branch-and-bound nodes evaluated by the
solver, and time gives the solution time in cpu seconds.

Queens Vars Cons NZ Nodes Time [s]

8 344 392 951 1,324 <1
12 804 924 2,243 122,394 120
16 1,456 1,680 4,079 >1 mill. >1,700

As we can see, between 12 and 16 queens is the maximum instance size we can ex-
pect to solve with this model. Neither changing the cplex parameters to aggressive
cut generation nor setting emphasis on integer feasibility improves the performance
significantly.

6Which is, in fact, rather random.

23

Zimpl

The binary models

Another approach to model the problem is to have one binary variable for each square
of the board. The variable is one if and only if a queen is in this square and we maximize
the number of queens on the board.

For each square we compute in advance which other squares are blocked if a queen
is placed on this particular square. Then the extended vif constraint is used to set
the variables of the blocked squares to zero if a queen is placed.

param columns := 8 ;

s e t C := { 1 . . columns } ;
s e t CxC := C ∗ C;

s e t TABU[< i , j> i n CxC] := { <m, n> in CxC with (m != i or n != j)
and (m == i or n == j or abs (m − i) == abs (n − j)) } ;

va r x [CxC] b i n a r y ;

maximize queens : sum <i , j> i n CxC : x [i , j] ;

subto c1 : f o r a l l <i , j> i n CxC do v i f x [i , j] == 1 then
sum <m, n> in TABU[i , j] : x [m, n] <= 0 end ;

Using extended formulations can make the models more comprehensible. For example,
replacing constraint c1 in line 13 with an equivalent one that does not use vif as shown
below, leads to a formulation that is much harder to understand.

subto c2 : f o r a l l <i , j> i n CxC do
card (TABU[i , j]) ∗ x [i , j]

+ sum <m, n> in TABU[i , j] : x [m, n] <= card (TABU[i , j]) ;

After the application of the cplex presolve procedure both formulations result in
identical integer programs. The performance of the model is shown in the following
table. S indicates the cplex settings used: Either (D)efault, (C)uts7, or (F)easibility8 .
Root Node indicates the objective function value of the lp relaxation of the root node.

Queens S Vars Cons NZ Root Node Nodes Time [s]

8 D 384 448 2,352 13.4301 241 <1
C 8.0000 0 <1

12 D 864 1,008 7,208 23.4463 20,911 4
C 12.0000 0 <1

16 D 1,536 1,792 16,224 35.1807 281,030 1,662
C 16.0000 54 8

24 C 3,456 4,032 51,856 24.0000 38 42
32 C 6,144 7,168 119,488 56.4756 >5,500 >2,000

This approach solves instances with more than 24 queens. The use of aggressive cut
generation improves the upper bound on the objective function significantly, though it
can be observed that for values of n larger than 24 cplex is not able to deduce the

7Cuts: mip cuts all 2 and mip strategy probing 3.
8Feasibility: mip cuts all -1 and mip emph 1

24

Zimpl

trivial upper bound of n.9 If we use the following formulation instead of constraint c2,
this changes:

subto c3 : f o r a l l <i , j> i n CxC do
f o r a l l <m, n> in TABU[i , j] do x [i , j] + x [m, n] <= 1 ;

As shown in the table below, the optimal upper bound on the objective function is
always found in the root node. This leads to a similar situation as in the integer
formulation, i. e., the solution time depends mainly on the time it needs to find the
optimal solution. While reducing the number of branch-and-bound nodes evaluated,
aggressive cut generation increases the total solution time.

With this approach instances, up to 96 queens can be solved. At this point, the
integer program gets too large to be generated. Even though the cplex presolve routine
is able to aggregate the constraints again, Zimpl needs too much memory to generate
the ip. The column labeled Pres. NZ lists the number of non-zero entries after the
presolve procedure.

Pres. Root Time
Queens S Vars Cons NZ NZ Node Nodes [s]

16 D 256 12,640 25,280 1,594 16.0 0 <1
32 D 1,024 105,152 210,304 6,060 32.0 58 5
64 D 4,096 857,472 1,714,944 23,970 64.0 110 60
64 C 64.0 30 89
96 D 9,216 2,912,320 5,824,640 53,829 96.0 70 193
96 C 96.0 30 410
96 F 96.0 69 66

Finally, we will try the following set packing formulation:

subto row : f o r a l l <i> in C do
sum <i , j> i n CxC : x [i , j] <= 1 ;

subto c o l : f o r a l l <j> in C do
sum <i , j> i n CxC : x [i , j] <= 1 ;

subto diag_row_do : f o r a l l <i> in C do
sum <m, n> in CxC with m − i == n − 1 : x [m, n] <= 1 ;

subto diag_row_up : f o r a l l <i> in C do
sum <m, n> in CxC with m − i == 1 − n : x [m, n] <= 1 ;

subto diag_col_do : f o r a l l <j> in C do
sum <m, n> in CxC with m − 1 == n − j : x [m, n] <= 1 ;

subto diag_col_up : f o r a l l <j> in C do
sum <m, n> in CxC with card (C) − m == n − j : x [m, n] <= 1 ;

Here again, the upper bound on the objective function is always optimal. The size
of the generated ip is even smaller than that of the former model after presolve. The
results for different instances size are shown in the following table:

9For the 32 queens instance the optimal solution is found after 800 nodes, but the upper
bound is still 56.1678.

25

Zimpl

Queens S Vars Cons NZ Root Node Nodes Time [s]

64 D 4,096 384 16,512 64.0 0 <1
96 D 9,216 576 37,056 96.0 1680 331
96 C 96.0 1200 338
96 F 96.0 121 15
128 D 16,384 768 65,792 128.0 >7000 >3600
128 F 128.0 309 90

In case of the 128 queens instance with default settings, a solution with 127 queens is
found after 90 branch-and-bound nodes, but cplex was not able to find the optimal
solution within an hour. From the performance of the Feasible setting, it can be
presumed that generating cuts is not beneficial for this model.

26

Zimpl

7 Error messages

Here is a (hopefully) complete list of the incomprehensible error messages Zimpl can
produce:

101 Bad filename
The name given with the -o option is either missing, a directory name, or starts
with a dot.

102 File write error
Some error occurred when writing to an output file. A description of the error
follows on the next line. For the meaning consult your OS documentation.

103 Output format not supported, using LP format
You tried to select another format than lp, mps, hum, rlp, or pip.

104 File open failed
Some error occurred when trying to open a file for writing. A description of the
error follows on the next line. For the meaning consult your OS documentation.

105 Duplicate constraint name “xxx”
Two subto statements have the same name.

106 Empty LHS, constraint trivially violated
One side of your constraint is empty and the other not equal to zero. Most
frequently this happens, when a set to be summed up is empty.

107 Range must be l 6 x 6 u, or u > x > l

If you specify a range you must have the same comparison operators on both
sides.

108 Empty Term with nonempty LHS/RHS, constraint trivially violated
The middle of your constraint is empty and either the left- or right-hand side of
the range is not zero. This most frequently happens, when a set to be summed
up is empty.

109 LHS/RHS contradiction, constraint trivially violated
The lower side of your range is bigger than the upper side, e.g. 15 6 x 6 2.

110 Division by zero
You tried to divide by zero. This is not a good idea.

111 Modulo by zero
You tried to compute a number modulo zero. This does not work well.

112 Exponent value xxx is too big or not an integer
It is only allowed to raise a number to the power of integers. Also trying to raise
a number to the power of more than two billion is prohibited.10

113 Factorial value xxx is too big or not an integer
You can only compute the factorial of integers. Also computing the factorial of
a number bigger then two billion is generally a bad idea. See also Error 115.

114 Negative factorial value
To compute the factorial of a number it has to be positive. In case you need it
for a negative number, remember that for all even numbers the outcome will be
positive and for all odd number negative.

10The behavior of this operation could easily be implemented as for(;;) or in a more
elaborate way as void f(){f();}.

27

Zimpl

115 Timeout!
You tried to compute a number bigger than 1000!. See also the footnote to Error
112.

116 Illegal value type in min: xxx only numbers are possible
You tried to build the minimum of some strings.

117 Illegal value type in max: xxx only numbers are possible
You tried to build the maximum of some strings.

118 Comparison of different types
You tried to compare apples with oranges, i.e, numbers with strings. Note that
the use of an undefined parameter can also lead to this message.

119 xxx of sets with different dimension
To apply Operation xxx (union, minus, intersection, symmetric difference) on
two sets, both must have the same dimension tuples,i. e., the tuples must have
the same number of components.

120 Minus of incompatible sets
To apply Operation xxx (union, minus, intersection, symmetric difference) on
two sets, both must have tuples of the same type,i. e., the components of the
tuples must have the same type (number, string).

121 Negative exponent on variable
The exponent to a variable was negative. This is not supported.

123 “from” value xxx is too big or not an integer
To generate a set, the “from” number must be an integer with an absolute value
of less than two billion.

124 “upto” value xxx is too big or not an integer
To generate a set, the “upto” number must be an integer with an absolute value
of less than two billion.

125 “step” value xxx is too big or not an integer
To generate a set, the “step” number must be an integer with an absolute value
of less than two billion.

126 Zero “step” value in range
The given “step” value for the generation of a set is zero. So the “upto” value
can never be reached.

127 Illegal value type in tuple: xxx only numbers are possible
The selection tuple in a call to the proj function can only contain numbers.

128 Index value xxx in proj too big or not an integer
The value given in a selection tuple of a proj function is not an integer or bigger
than two billion.

129 Illegal index xxx, set has only dimension yyy

The index value given in a selection tuple is bigger than the dimension of the
tuples in the set.

131 Illegal element xxx for symbol
The index tuple used in the initialization list of a index set, is not member of the
index set of the set. E.g, set A[{ 1 to 5 }] := <1> { 1 }, <6> { 2 };

132 Values in parameter list missing, probably wrong read template
Probably the template of a read statement looks like "<1n>" only having a
tuple, instead of "<1n> 2n".

28

Zimpl

133 Unknown symbol xxx
A name was used that is not defined anywhere in scope.

134 Illegal element xxx for symbol
The index tuple given in the initialization is not member of the index set of the
parameter.

135 Index set for parameter xxx is empty
The attempt was made to declare an indexed parameter with the empty set as
index set. Most likely the index set has a with clause which has rejected all
elements.

139 Lower bound for integral var xxx truncated to yyy (warning)
An integral variable can only have an integral bound. So the given non integral
bound was adjusted.

140 Upper bound for integral var xxx truncated to yyy (warning)
An integral variable can only have an integral bound. So the given non integral
bound was adjusted.

141 Infeasible due to conflicting bounds for var xxx

The upper bound given for a variable was smaller than the lower bound.

142 Unknown index xxx for symbol yyy
The index tuple given is not member of the index set of the symbol.

143 Size for subsets xxx is too big or not an integer
The cardinality for the subsets to generate must be given as an integer smaller
than two billion.

144 Tried to build subsets of empty set
The set given to build the subsets of, was the empty set.

145 Illegal size for subsets xxx, should be between 1 and yyy

The cardinality for the subsets to generate must be between 1 and the cardinality
of the base set.

146 Tried to build powerset of empty set
The set given to build the powerset of, was the empty set.

147 use value xxx is too big or not an integer
The use value must be given as an integer smaller than two billion.

148 use value xxx is not positive
Negative or zero values for the use parameter are not allowed.

149 skip value xxx is too big or not an integer
The skip value must be given as an integer smaller than two billion.

150 skip value xxx is not positive
Negative or zero values for the skip parameter are not allowed.

151 Not a valid read template
A read template must look something like "<1n,2n>". There have to be a <

and a > in this order.

152 Invalid read template syntax
Apart from any delimiters like <, >, and commas a template must consists of
number character pairs like 1n, 3s.

153 Invalid field number xxx

The field numbers in a template have to be between 1 and 255.

29

Zimpl

154 Invalid field type xxx

The only possible field types are n and s.

155 Invalid read template, not enough fields
There has to be at least one field inside the delimiters.

156 Not enough fields in data
The template specified a field number that is higher than the actual number of
field found in the data.

157 Not enough fields in data (value)
The template specified a field number that is higher than the actual number of
field found in the data. The error occurred after the index tuple in the value
field.

159 Type error, expected xxx got yyy

The type found was not the expected one, e.g. subtracting a string from a
number would result in this message.

160 Comparison of elements with different types xxx / yyy

Two elements from different tuples were compared and found to be of different
types.

161 Line xxx: Unterminated string
This line has an odd number of " characters. A String was started, but not
ended.

162 Line xxx: Trailing "yyy" ignored (warning)
Something was found after the last semicolon in the file.

163 Line xxx: Syntax Error
A new statement was not started with one of the keywords: set, param, var,
minimize, maximize, subto, or do.

164 Duplicate element xxx for set rejected (warning)
An element was added to a set that was already in it.

165 Comparison of different dimension sets (warning)
Two sets were compared, but have different dimension tuples. (This means they
never had a chance to be equal, other than being empty sets.)

166 Duplicate element xxx for symbol yyy rejected (warning)
An element that was already there was added to a symbol.

167 Comparison of different dimension tuples (warning)
Two tuples with different dimensions were compared.

168 No program statements to execute
No Zimpl statements were found in the files loaded.

169 Execute must return void element
This should not happen. If you encounter this error please email the .zpl file to
mailto:koch@zib.de.

170 Uninitialized local parameter xxx in call of define yyy

A define was called and one of the arguments was a “name” (of a variable) for
which no value was defined.

171 Wrong number of arguments (xxx instead of yyy) for call of define zzz

A define was called with a different number of arguments than in its definition.

30

mailto:koch@zib.de

Zimpl

172 Wrong number of entries (xxx) in table line, expected yyy entries
Each line of a parameter initialization table must have exactly the same number
of entries as the index (first) line of the table.

173 Illegal type in element xxx for symbol
A parameter can only have a single value type. Either numbers or strings. In
the initialization both types were present.

174 Numeric field xxx read as "yyy". This is not a number
It was tried to read a field with an ’n’ designation in the template, but what was
read is not a valid number.

175 Illegal syntax for command line define "xxx" – ignored (warning)
A parameter definition using the command line -D flag, must have the form
name=value. The name must be a legal identifier, i. e., it has to start with a
letter and may consist only out of letters and numbers including the underscore.

176 Empty LHS, in Boolean constraint (warning)
The left hand side, i. e., the term with the variables, is empty.

177 Boolean constraint not all integer
No continuous (real) variables are allowed in a Boolean constraint.

178 Conditional always true or false due to bounds (warning)
All or part of a Boolean constraint are always either true or false, due to the
bounds of variables.

179 Conditional only possible on bounded constraints
A Boolean constraint has at least one variable without finite bounds.

180 Conditional constraint always true due to bounds (warning)
The result part of a conditional constraint is always true anyway. This is due to
the bounds of the variables involved.

181 Empty LHS, not allowed in conditional constraint
The result part of a conditional constraint may not be empty.

182 Empty LHS, in variable vabs
There are no variables in the argument to a vabs function. Either everything is
zero, or just use abs.

183 vabs term not all integer
There are non integer variables in the argument to a vabs function. Due to
numerical reasons continuous variables are not allowed as arguments to vabs.

184 vabs term not bounded
The term inside a vabs has at least one unbounded variable.

185 Term in Boolean constraint not bounded
The term inside a vif has at least one unbounded variable.

186 Minimizing over empty set – zero assumed (warning)
The index expression for the minimization was empty. The result used for this
expression was zero.

187 Maximizing over empty set – zero assumed (warning)
The index expression for the maximization was empty. The result used for this
expression was zero.

31

Zimpl

188 Index tuple has wrong dimension
The number of elements in an index tuple is different from the dimension of
the tuples in the set that is indexed. This might occur, when the index tuple
of an entry in a parameter initialization list has not the same dimension as the
indexing set of the parameter. This might occur, when the index tuple of an
entry in a set initialization list has not the same dimension as the indexing set
of the set. If you use a powerset or subset instruction, the index set has to be
one dimension.

189 Tuple number xxx is too big or not an integer
The tuple number must be given as an integer smaller than two billion.

190 Component number xxx is too big or not an integer
The component number must be given as an integer smaller than two billion.

191 Tuple number xxx is not a valid value between 1..yyy
The tuple number must be between one and the cardinality of the set.

192 Component number xxx is not a valid value between 1..yyy
The component number must be between one and the dimension of the set.

193 Different dimension tuples in set initialization
The tuples that should be part of the list have different dimension.

195 Genuine empty set as index set (warning)
The set of an index set is always the empty set.

197 Empty index set for set
The index set for a set is empty.

198 Incompatible index tuple
The index tuple given had fixed components. The type of such a component was
not the same as the type of the same component of tuples from the set.

199 Constants are not allowed in SOS declarations
When declaring an SOS, weights are only allowed together with variables. A
weight alone does not make sense.

200 Weights are not unique for SOS xxx (warning)
All weights assigned to variables in an special ordered set have to be unique.

201 Invalid read template, only one field allowed
When reading a single parameter value, the read template must consist of a
single field specification.

202 Indexing over empty set (warning)
The indexing set turns out to be empty.

203 Indexing tuple is fixed (warning)
The indexing tuple of an index expression is completely fixed. As a result only
this one element will be searched for.

204 Random function parameter minimum= xxx >= maximum= yyy

The second parameter to the function random has to be strictly greater than the
first parameter.

205 xxx excess entries for symbol yyy ignored (warning)
When reading the data for symbol yyy there were xxx more entries in the file
than indices for the symbol. The excess entries were ignored.

32

Zimpl

206 argmin/argmax over empty set (warning)
The index expression for the argmin or argmax was empty. The result is the
empty set.

207 “size” value xxx is too big or not an integer
The size argument for an argmin or argmax function must be an integer with an
absolute value of less than two billion.

208 “size” value xxx not >= 1
The size argument for an argmin or argmax function must be at least one, since
it represents the maximum cardinality of the resulting set.

209 MIN of set with more than one dimension
The expressions min(A) is only allowed if the elements of set A consist of 1-tuples
containing numbers.

210 MAX of set with more than one dimension
The expressions max(A) is only allowed if the elements of set A consist of 1-tuples
containing numbers.

211 MIN of set containing non number elements
The expressions min(A) is only allowed if the elements of set A consist of 1-tuples
containing numbers.

212 MAX of set containing non number elements
The expressions max(A) is only allowed if the elements of set A consist of 1-tuples
containing numbers.

213 More than 65535 input fields in line xxx of yyy (warning)
Input data beyond field number 65535 in line xxx of file yyy are ignored. Insert
some newlines into your data!

214 Wrong type of set elements – wrong read template?
Most likely you have tried read in a set from a stream using "n+" instead of
"<n+>" in the template.

215 Startvals violate constraint, . . . (warning)
If the given startvals are summed up, they violate the constraint. Details about
the sum of the LHS and the RHS are given in the message.

216 Redefinition of parameter xxx ignored
A parameter was declared a second time with the same name. The typical use
would be to declare default values for a parameter in the Zimpl file and override
them by command-line defined.

217 begin value xxx in substr too big or not an integer
The begin argument for an substr function must be an integer with an absolute
value of less than two billion.

218 length value xxx in substr too big or not an integer
The length argument for an substr function must be an integer with an absolute
value of less than two billion.

219 length value xxx in substr is negative
The length argument for an substr function must be greater or equal to zero.

220 Illegal size for subsets xxx, should be between yyy and zzz

The cardinality of the subsets to generate must be between the given lower bound
and the cardinality of the base set.

33

Zimpl

221 The objective function has to be linear
Only objective functions with linear constraints are allowed.

222 Term inside a then or else constraint not linear
The term inside a then or else is not linear.

223 Objective function xxx overwrites existing one (warning)
Another objective function declaration has been encountered, superceeding the
previous one.

301 variable priority has to be integral (warning)
If branching priorities for variables are given, these have to be integral.

302 SOS priority has to be integral (warning)
If SOS priorities are given, these have to be integral.

600 File format can only handle linear and quadratic constraints (warning)

The chosen file format can currently only handle linear and quadratic constraints.
Higher degree constraints were ignored.

700 log(): OS specific domain or range error message

Function log was called with a zero or negative argument, or the argument was
too small to be represented as a double.

701 sqrt(): OS specific domain error message

Function sqrt was called with a negative argument.

702 ln(): OS specific domain or range error message

Function ln was called with a zero or negative argument, or the argument was
too small to be represented as a double.

800 parse error: expecting xxx (or yyy)
Parsing error. What was found was not what was expected. The statement you
entered is not valid.

801 Parser failed
The parsing routine failed. This should not happen. If you encounter this error,
please email the .zpl file to mailto:koch@zib.de.

802 Regular expression error
A regular expression given to the match parameter of a read statement was not
valid. See error messages for details.

803 String too long xxx > yyy

The program encountered a string which is larger than 1 GB.

900 Check failed!
A check instruction did not evaluate to true.

References

[Chv83] Vašek Chvátal. Linear Programming. H.W. Freeman and Company, New
York, 1983.

[Dan90] Georg B. Dantzig. The diet problem. Interfaces, 20:43–47, 1990.

[FGK03] R. Fourier, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling Language
for Mathematical Programming. Brooks/Cole—Thomson Learning, 2nd edi-
tion, 2003.

34

mailto:koch@zib.de

Zimpl

[GNU03] GNU multiple precision arithmetic library (GMP), version 4.1.2., 2003. Code
and documentation available at http://gmplib.org.

[IBM97] IBM optimization library guide and reference, 1997.

[ILO02] ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV
89451, USA. ILOG CPLEX 8.0 Reference Manual, 2002. Information avail-
able at http://www.ilog.com/products/cplex.

[Kal04a] Josef Kallrath. Mathematical optimization and the role of modeling lan-
guages. In Josef Kallrath, editor, Modeling Languages in Mathematical Op-
timization, pages 3–24. Kluwer, 2004.

[Kal04b] Josef Kallrath, editor. Modeling Languages in Mathematical Optimization.
Kluwer, 2004.

[Koc04] Thorsten Koch. Rapid Mathematical Programming. PhD thesis, Technische
Universität Berlin, 2004.

[Sch03] Alexander Schrijver. Combinatorial Optimization. Springer, 2003.

[Sch04] Hermann Schichl. Models and the history of modeling. In Josef Kallrath, edi-
tor, Modeling Languages in Mathematical Optimization, pages 25–36. Kluwer,
2004.

[SG91] Rok Sosič and Jun Gu. 3,000,000 million queens in less than a minute.
SIGART Bulletin, 2(2):22–24, 1991.

[Spi04] Kurt Spielberg. The optimization systems MPSX and OSL. In Josef Kallrath,
editor, Modeling Languages in Mathematical Optimization, pages 267–278.
Kluwer, 2004.

[vH99] Pascal van Hentenryck. The OPL Optimization Programming Language. MIT
Press, Cambridge, Massachusetts, 1999.

[XPR99] XPRESS-MP Release 11 Reference Manual. Dash Associates, 1999. Infor-
mation available at http://www.dashoptimization.com.

35

http://gmplib.org
http://www.ilog.com/products/cplex
http://www.dashoptimization.com

	Preface
	Introduction
	Invocation
	Format
	Expressions
	Tuples and sets
	Parameters
	Initializing sets and parameters from a file
	sum-expressions
	forall-statements
	Function definitions
	The do print and do check commands

	Models
	Variables
	Objective
	Constraints

	Modeling examples
	The diet problem
	The traveling salesman problem
	The capacitated facility location problem
	The n-queens problem

	Error messages

