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Introduction

Given a set X of d-dimensional data consisting of two types of points, we want to find a
function that classifies each point to be in one of the two sets based on its location. We want
work with the hypothesis of a linear classification model, i.e. we look for a hyperplane that
separates these two sets1.
A hyperplane h is given by a normal vector
ω and a translation b and the classification
hω,b is defined as follows:

hω,b(x) = sgn(ωTx+ b) ∈ {−1, 1}

We require that this evaluation coincides
with the given classification of the points2.
Additionally we require the parameter ω and
b to be such that no points lie in the margin
which is defined as the following set of points
x3:

{x : |hω,b(x)| < 1}
We want to reduce the dimension of the orig-
inal space and consider only a subset of fea-
tures4. In our model this implies that a cer-
tain fraction of weights is required to be zero
resulting in a sparse classifier.
A sparse classifier with sparsity ρ is a linear classifier where a fraction of the ω entries is equal
to 0:

ρ(ω) =
|{i : ωi = 0}|

d
Advantages of a sparse classifier are a smaller cost of the classification and the fact that it
results in a simpler model5

1graphic taken from: https://en.wikipedia.org/wiki/File:Svm max sep hyperplane with margin.png.
2This may not always be possible. In that unlucky case we require the condition for as many datapoints x

as possible and penalize misclassifications.
3It is easy to see that the width of the margin decreases when the length of ω increases.
4This classification to be successful meaning that not all features are relevant.
5Occam’s razor : from a set of solutions to a problem select the one that makes the fewest assumptions.
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Material

The sub directory scip-workshop/support-vector-machine is the place where you should
place you python script. It also contains a subdirectory data, which contains means to read
in the data by the following python commands:

from data . l o a d c a n c e r import l o a d c a n c e r

d a t a s e t = l o a d c a n c e r ( )
X = np . a r r a y ( d a t a s e t . data )
y = np . a r r a y ( d a t a s e t . t a r g e t s )

The dataset is the classification of benign (y = −1) or malignant (y = 1) breast cancer based
on 30 features and contains 569 data points. Out of these 212 are malignant and 357 are
benign. It is taken from:

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/

For all the exercises you should split the dataset into two parts, one that you train on and
one that you predict.

Exercise 1

Your first task is to implement a linear svm with the following model.
Let the set of datapoints consist of n d-dimensional features X ∈ Rn,d, labeled by y ∈
{−1,+1}n and let C > 0 be a regularization parameter. To penalize wrongly classified
datapoints, consider as a loss function the Hinge loss6:

li(t) := max{0, 1− yit} for i ∈ {1, . . . , n}

As you want to minimize the penalty, and maximize the margin (equivalently minimize the
length of ω, since the width of the margin is given by 2

‖ω‖), the model can now be written as
the following optimization problem:

min
ω,b

C

n

n∑
i=1

li(ωTXi + b) +
1

2
‖ω‖22

Substituting the Hinge loss for a variable

ξi ≥ li(ωTXi + b)

= max{0, 1− yi(ωTXi + b)},
the above problem is equivalent to:

min
ω,b

C
n

n∑
i=1

ξi + 1
2‖ω‖

2
2

such that 1− yi(ωTXi + b) ≤ ξi, i ∈ {1, . . . , n}

0 ≤ ξi, i ∈ {1, . . . , n}
6Here t is the evaluation of the classifier on datapoints.
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Exercise 2

Modify the model from exercise 1 to produce a sparse classifier.
To implement a sparse classifier with sparsity ρ, add additional constraints and variables to
the model7.

∑
j∈d vj ≤ ρ · d

−B · vj ≤ ωj ≤ B · vj , j ∈ {1, . . . , d}

vj ∈ {0, 1}, j ∈ {1, . . . , d}

For i ∈ {1, . . . , d} assume the weights ωj to be bounded by −B and B for a bound B > 0.
Only a fraction of these new binary indicator variables vj are allowed to be nonzero. Then
all the vj that are zero will force their corrensponding ωj to be zero.

Exercise 3

Depending on the number of positive and negative samples in the data we might want to weight
the penalties differently, ensuring that points from one of the sets have a higher probability
to be classified correctly8. This correction ci is applied in the objective function:

C

n

n∑
i=1

ciξ
i +

1

2
‖ω‖22, where ci =

{
α if yi = 1

β if yi = −1

Your task is to balance the data.

7Another possibility would be to prefer sparse solutions using an L1-norm in the objective function.
8An application would be medical tests, where the a false negative should be highly unlikely, whereas a

false positive is not disastrous.
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